La₂O₃-loaded SnO₂ Element as a CO₂ Gas Sensor Tetsunori YOSHIOKA, Noritaka MIZUNO, and Masakazu IWAMOTO* Catalysis Research Center, Hokkaido University, Sapporo 060 Among SnO₂ elements modified by various metal oxides, La₂O₃-loaded SnO₂ element was found to show promising sensing properties to CO₂ in dry air at 673 K, rather high sensitivity and quick response. The sensitivity to CO₂ depended on the operation temperature and the amounts of metal oxides loaded. A linear relationship between the sensitivity and the concentration of CO₂ was observed for La₂O₃-loaded SnO₂ element. Detecting the concentration of CO₂ at ppm level by a simple method has been desired not only in various industrial processes but also in environmental technology. 1-7) Although semiconductor gas sensors have been widely used for detecting CO, town gas, or LPG in air, they are not useful for sensing CO₂ because much less reactivity of CO₂ causes no change of the properties of oxides. At present, solid electrolyte, 1,3) mixed oxide capacitor, 4,5) and K₂CO₃-polyethylene glycol solution supported on porous ceramics 7) have been reported to show good sensing properties for the CO₂ detection. These sensors, however, have more complex structure than that of oxide resistors. Therefore, if the resistance of metal oxides changes much with the concentration of CO₂, the metal oxides will be able to provide a simpler and more feasible CO₂ sensor system. Here we wish to report a promising sensing ability of La₂O₃-loaded SnO₂ element. The structure of the sensor element fabricated is the same as that reported elsewhere.⁸⁾ SnO₂ powder was obtained from the Catalysis Society of Japan. The powder was impregnated with various metal oxides in three different ways (I) - (III). In the procedures I and II the SnO₂ powder was mixed with water and the resulting paste was applied on an alumina tube having two Pt-wire electrodes, and calcined at 973 K for 4 h. Then the resultant element was impregnated with aqueous solution of metal nitrate or acetate by coating with a brush (I), or by soaking the element into the solution (II). The elements were dried and again calcined at 773 K for 5 h before use. In the procedure III the SnO₂ powder was first impregnated with aqueous solution of metal nitrate by an incipient wetness method and dried. The resulting powder was applied on an alumina tube after being mixed with water into paste, and calcined at 973 K for 4 h. Sample gas containing 2080 ppm CO₂ in dry air balance was commercially obtained. It was confirmed that no water vapor was detected in the gas by gas chromatography. Prior to each resistance measurement, each metal oxide- loaded SnO₂ element was exposed to dry air (60 cm³•min⁻¹) at 773 K for 60 min. A CO₂ gas (\leq 2080 ppm, dry air balance, 60 cm³•min⁻¹) was then introduced. The sensitivity to CO₂ was defined as the ratio of resistance of an element in dry air to that in a sample gas, R_{air}/R_{CO_2} . At first effect of the sample preparation methods was examined. The sample prepared by the method I showed the highest sensitivity to CO₂. This would be due to the difference of the distribution of the additives, though the reason should be clarified in the future study. In addition, the reproducibility of the results on samples prepared by the method I is very good; therefore, the Fig. 1. Response transients to 2080 ppm CO₂ on the pure, La₂O₃-, and SrO-loaded SnO₂ elements at 673 K. (a) Pure SnO₂. (b) La₂O₃(4.2 wt%)-SnO₂. (c) SrO(1.1 wt%)-SnO₂. procedure I is preferentially employed hereafter. Figure 1 shows response transients to 2080 ppm CO_2 at 673 K on the pure, La_2O_3 -, and $SrO-SnO_2$ elements. On turning CO_2 flow on the resistance of each sensor decreased more or less. The sensitivity of pure SnO_2 element was small ($R_{air}/R_{CO_2} = 1.02$). On the other hand, the sensitivity of La_2O_3 - or SrO-loaded SnO_2 elements show higher sensitivity to CO_2 than pure SnO_2 element. Repeating turning-on and -off little changed the response transient of La_2O_3 - or SrO-loaded SnO_2 elements. The decrease in the resistance by the exposure of the element to the CO_2 flow may be due to the desorption of O- or O_2 - by the adsorption of CO_2 to yield oxygen molecules and free electrons. Further mechanistic studies on the CO_2 sensing of these elements are in progress. The sensing properties for 2080 ppm CO₂ at 673 K was compared among the SnO₂ elements loaded with various metal oxides. Table 1 summarized the sensitivity and the 90% response time. R_{air}/R_{CO_2} increased by the loading of metal oxides on SnO₂, except for the K₂O-loaded SnO₂ element, approximately in the following order; SnO₂ only \approx alkaline metal oxides \leq transition metal oxides < alkaline earth oxide \leq rare earth oxides. The order is of interest and probably related with the sensing mechanism though the details would be clarified by the experiments in progress. Among the elements listed in Table 1, the La₂O₃-loaded SnO₂ element showed the highest sensitivity to CO₂ at 673 K, $R_{air}/R_{CO_2} = 1.79$. On the other hand, 90% response times are much improved by the addition of rare earth oxide, while become longer by the addition of alkaline earth oxide. For example, La₂O₃-loaded SnO₂ element the response to turning CO₂ on was so quick (90% response time was about 0.4 min) and the response to turning-off (time to recover the initial level completely) was within 2 min. These | Table 1. CO ₂ | sensing | characteristicsa) of | metal | oxide-loaded | SnO_2 | |--------------------------|---------|----------------------|-------|--------------|---------| | element at 673 | K | | | | | | element at 6/3 K | | | | |--------------------------------|--------------------|-------------------------------------|--------------------------| | Metal oxide | Amount of metal | R _{air} / R _{CO2} | 90% Response | | | oxide loaded / wt% | _ | time ^{b)} / min | | Pure SnO ₂ | - | 1.02 | 2.4 | | Li ₂ O | 0.6 | 1.41 | 0.7 | | Na ₂ O | 5.9 | 1.02 | 0.3 | | K_2O | 2.8 | 0.82 | - | | MgO | 0.6 | 1.24 | 7.8 | | CaO | 1.3 | 1.53 | 4.3 | | SrO | 1.1 | 1.53 | 4.2 | | BaO | 0.5 | 1.68 | 4.5 | | Cr_2O_3 | 1.2 | 1.33 | 2.6 | | Fe ₂ O ₃ | 0.5 | 1.34 | 1.4 | | CoO | 2.4 | 1.17 | 2.7 | | NiO | 1.4 | 1.32 | 3.4 | | CuO | 1.8 | 1.16 | 1.4 | | ZnO | 2.9 | 0.97 | - | | La ₂ O ₃ | 4.2 | 1.79 | 0.4 | | Pr_2O_3 | 3.4 | 1.54 | 0.5 | | Nd ₂ O ₃ | 4.2 | 1.76 | 0.4 | a) CO₂ concentration, 2080 ppm. b) 90% Response time for the increase of CO₂ concentration. results, i.e., rather high sensitivity and rapid response to CO₂, indicate that La₂O₃-loaded SnO₂ element has a promising salient feature as a CO₂ gas sensor. Hereafter the La₂O₃-loaded SnO₂ element is investigated in more detail. The sensing ability of La₂O₃-loaded SnO₂ element depended on the operation temperature. In the range of operation temperature 633 - 773 K, the sensitivity and 90% response time decreased with the increment in the operation temperature. The sensor characteristics depended not only on the operation temperature but also on the amount of metal oxide loaded. The Fig. 2. Dependence of sensitivity (\bigcirc) and 90% response time (\triangle) of La₂O₃-loaded SnO₂ element on the amounts of La₂O₃ loaded at 673 K. dependence of the sensitivity and 90% response time of La₂O₃-loaded SnO₂ element on the amount of La₂O₃ loaded is shown in Fig. 2. The sensitivity (\bigcirc) of La₂O₃-SnO₂ element at 673 K increased monotonously in the range of the amount of La₂O₃ loaded 0 - 4.2 wt% and decreased beyond 4.2 wt%. The 90% response time (\triangle) was much decreased by the loading of 1.0 wt% La₂O₃ and was not changed with more loading. The sensitivity of La₂O₃-loaded SnO₂ element is depicted in Fig. 3 as a function of CO₂ concentration. Clearly, below 2080 ppm a linear relationship between the sensitivity and the concentration of CO₂ can be recognized. The correlation enables us to measure the concentration of CO₂ by the change in the resistance of the sensor element. Fig. 3. Dependence of sensitivity of La₂O₃(2.7 wt%)-loaded SnO₂ element on the CO₂ concentration at 673 K. In conclusion, the CO₂ sensing property of SnO₂ element was improved by the loading of various metal oxides; in particular, La₂O₃-SnO₂ showed the rather high sensitivity and the quick response. ## References - 1) S. Yao, Y. Shimizu, N. Miura, and N. Yamazoe, Chem. Lett., 1990, 2033. - 2) J. Tamaki, M. Akiyama, C. Xu, N. Miura, and N. Yamazoe, Chem. Lett., 1990, 1243. - 3) T, Ogata, S. Fujitsu, M. Miyayama, K. Koumoto, and H. Yanagida, J. Mater. Sci. Lett., 5, 285 (1986). - 4) T. Ishihara, K. Kometani, and Y. Takita, J. Electrochem. Soc., 138, 173 (1991). - 5) T. Ishihara, K. Kometani, M. Hashida, and Y. Takita, Chem. Lett., 1990, 1163. - 6) J. F. McAleer, P. T. Moseley, J. O. W. Norris, D. E. Williams, and B. C. Tofield, *J. Chem. Soc., Faraday Trans.* 1, **84**, 441 (1988). - 7) Y. Shimizu, K. Komori, and M. Egashira, *J. Electrochem. Soc.*, **136**, 2256 (1989). - 8) S. Matsushima, T. Maekawa, J. Tamaki, N. Miura, and N. Yamazoe, *Chem. Lett.*, **1989**, 845. (Received April 25, 1991)